Skip to main content

How a Nuclear Reactor Works


Nuclear reactors have one job: to split atoms in a controlled reaction and use the released energy to generate electrical power. Over the years, reactors have been viewed as both a miracle and a menace.
When the first U.S. commercial reactor went on line in Shippingport, Pa., in 1956, the technology was hailed as the energy source of the future, one that some believed eventually would make electricity too cheap to meter. Countries around the world built 442 nuclear reactors, and about a quarter of those reactors were built in the United States [source: Euronuclear.org]. The world has come to depend upon nuclear reactors for 14 percent of its electricity [source: Nuclear Energy Institute]. In fact, futurists fantasized about having nuclear-powered automobiles [source: Ford].
Then, 23 years later, when Unit 2 at the Three Mile Island power plant in Pennsylvania suffered a cooling malfunction and a partial meltdown of its radioactive fuel, feelings about reactors changed radically. Even though the stricken reactor's containment held and there was no major radiation release, many people began to see reactors as overly complicated and vulnerable to human and equipment failures, with potentially catastrophic consequences. They also worried about the radioactive waste from reactors. Worse yet, many wondered if government regulators and the nuclear power industry were leveling with the public. As a result, the construction of new nuclear plants stopped in the United States. When a more serious accident occurred at the Soviet Union's Chernobyl nuclear plant in 1986, nuclear power seemed doomed to obsolescence [source: Union of Concerned Scientists].

But in the early 2000s, nuclear reactors began making a comeback, thanks to rising energy demand, diminishing fossil fuel supplies, and the growing concern about climate change due to carbon dioxide emissions. Late in the decade, the U.S. Nuclear Regulatory Commission began to approve permits for new plants, and President Barack Obama included nuclear power as a key part of his energy plan.
But then, in March 2011, yet another crisis hit -- this time at the earthquake-stricken Fukushima Daiichi nuclear power plant in Japan -- raising worries again.
In this article, we'll explain how nuclear reactors work, what happens when they malfunction, and the risks they pose to our health and the environment compared to other energy sources. We'll also take a look at what technological advances could make the nuclear reactors of the future safer.
But first, let's look at how nuclear fission, the process that actually produces the energy, actually works.

Harnessing a Nuclear Reaction

Put simply, a nuclear reactor splits atoms and releases the energy that holds their parts together.
If it's been a while since you took high school physics, we'll remind you how nuclear fission works: Atoms are like tiny solar systems, with the nucleus where the sun would be, and electrons orbiting around it. The nucleus is made up of particles called protons and neutrons, which are bound together by something called strong force. Perhaps it was named "strong force" because it's almost too powerful for us to imagine -- many, many billions of times stronger than gravity, in fact [source: Bryson]. Despite the strength of strong force, it's possible to split a nucleus -- by shooting neutrons at it. When that's done, a whole lot of energy is released. When atoms split, their particles smash into nearby atoms, splitting those as well in a chain reaction. (Think a multi-car crash on the freeway.)

Uranium, an element with really big atoms, is perfect for atom splitting because its strong force, though powerful, is relatively weak compared to other elements. Nuclear reactors use a particular isotope called uranium-235 [source: Union of Concerned Scientists]. Uranium-235 is rare in nature; the ore from uranium mines only contains about 0.7 percent uranium-235. That's why reactors use enriched uranium, which is created by separating out and concentrating the uranium-235 through a gas diffusion process [source: NRC].

This process is what gives an atomic bomb, like the ones that were dropped on Hiroshima and Nagasaki, Japan, during World War II, such terrible power. But in a nuclear reactor, the chain reaction is controlled by inserting control rods made of a material like cadmium, hafnium or boron, which absorb some of the neutrons [source: World Nuclear Association]. That still allows the fission process to give off enough energy to heat water to a temperature of about 520 degrees Fahrenheit (271 degrees Celsius) and turn it into steam, which is used to turn turbines and generate electricity [source: Union of Concerned Scientists]. Basically, a nuke plant works like a coal-powered electrical plant, except that the energy to boil water comes from splitting atoms instead of burning carbon [source: Nuclear Regulatory Commission].
In the next section, we'll talk about the different types of reactors and how their key parts work.

Nuclear Reactor Components

There are several different types of nuclear reactors, but they all have some common characteristics. All of them have a supply of radioactive fuel pellets -- usually uranium oxide, which are arranged in tubes to form fuel rods in the reactor core [source: World Nuclear Association].
The reactor also has the previously mentioned control rods -- made of neutron-absorbing material such as cadmium, hafnium or boron -- which are inserted into the core to control or halt the reaction [source: World Nuclear Association].

A reactor also has a moderator, a substance that slows the neutrons and helps control the fission process. Most reactors in the United States use ordinary water, but reactors in other countries sometimes use graphite, or heavy water, in which the hydrogen has been replaced with deuterium, an isotope of hydrogen with one proton and one neutron [source: World Nuclear Association, Federation of American Scientists]. Another important part of the system is a coolant -- again, usually ordinary water-- which absorbs and transmits heat from the reactor to create steam for turning the turbines and cools the reactor core so that it doesn't reach the temperature at which uranium melts (about 6,900 degrees Fahrenheit, or 3,815 degrees Celsius) [source: World Nuclear Association]. (We'll explain why a meltdown is a very bad thing later in this article.)
Finally, a reactor is encased in a containment, a big, heavy structure, typically several feet thick and made of steel and concrete, that keeps radioactive gases and liquids inside, where they can't hurt anyone [source: World Nuclear Association].

There are a number of different reactor designs in use, but in the United States, about two-thirds of the reactors are pressurized water reactors (PWRs). In a pressurized water reactor, the water is pumped into contact with the core and then kept under pressure, so that it can't turn into steam. That pressurized water then is brought into contact with a second supply of unpressurized water, which is what turns to steam to turn the turbines. The remaining third of reactors in the United States are boiling water reactors (BWRs). With BWRs, the water that comes directly into contact with the reactor core is allowed to become steam for generating electricity [source: World Nuclear Association].
In the next section, we'll look at the potential risks nuclear reactors pose, and how to evaluate them.









Comments

Popular posts from this blog

How Google Fiber Works

Some of us are old enough to recollect a time when everyone on the Internet used it through a dial-up connection. Your computer connected to a modem that noisily calls the phone number of an  ISP (Internet Service Provider) to allow you connect at 56 kilobits per second, if you were quite fortunate to have a faster modem. Web pages  load slowly onto pc screens.Pictures usually use a lot of time to fully show up. Software usually take hours to fully download. If you do not have a dedicated phone line, you would tie up the line, and the connection may trigger off if someone calls the phone line. We used  more of text than other bandwidth-hungry media out of need. Recently Internet connection speeds have increased tremendously from the use of broadband connections using technologies like cable and DSL (Digital Subscriber Lines) and 4G or LTE .  According to the FCC's standards, the new goal is for all household to have access to broadband with a minimum speed of...

How sonar works

Sonar(sound navigation and ranging) is the use of an echo.If an animal or machine makes a noise, it sends out sound waves into the space surrounding it. The waves bounce back off objects in its path, and some are reflected back to the source of the sound. It's the reflected sound waves that you perceive when your voice echoes back to you in an empty room.  Whales and special machine use reflected waves to locate distant objects(Echo location) and detect their shape and movement. The range and limit of low-frequency sonar is astonishing. Dolphins and whales can differentiate between very small objects size of a pellet 50 feet (15 meters) away, and they use sonar more than sight to locate their food, families, and direction.Whales send signals out bin the range 160 to 190 Db.Bats also use it to locate prey and navigate from obst...

How Google Loon Works.

It is believed that a lot of people are hooked to the  Internet   ,but this is only partially true. Around 4 billion people do not have access to the internet as of late 2015. Several people reside in place where there is no internet infrastructure,or where coverage is unavailable or exorbitantly high. Google, known for its numerous high-tech pursuits,has several projects in the development stage to bring high-speed Internet access to the a lot of people. Their Fiber project aims to provide Gigabit internet service,which faster than the existing connection speeds we are used to. Using fiber optics,it has programs going on in several cities in the US. The firm has a different project focused on taking high-speed Internet access to places that do not have it. The project uses a technology we call it primitive — balloons! The project is known as Project Loon ,because it involves using  balloons  and also because it sounds looney. Google intends to create wireless...