Skip to main content

Cell-phone Codes

All cell phones have special codes associated with them. These codes are used to identify the phone, the phone's owner and the service provider.

Let's say you have a cell phone, you turn it on and someone tries to call you. Here is what happens to the call:

  • When you first power up the phone, it listens for an SID (see sidebar) on the control channel. The control channel is a special frequency that the phone and base station use to talk to one another about things like call set-up and channel changing. If the phone cannot find any control channels to listen to, it knows it is out of range and displays a "no service" message.

  • When it receives the SID, the phone compares it to the SID programmed into the phone. If the SIDs match, the phone knows that the cell it is communicating with is part of its home system.

  • Along with the SID, the phone also transmits a registration request, and the MTSO keeps track of your phone's location in a database -- this way, the MTSO knows which cell you are in when it wants to ring your phone.

  • The MTSO gets the call, and it tries to find you. It looks in its database to see which cell you are in.

  • The MTSO picks a frequency pair that your phone will use in that cell to take the call.

  • The MTSO communicates with your phone over the control channel to tell it which frequencies to use, and once your phone and the tower switch on those frequencies, the call is connected. Now, you are talking by two-way radio to a friend.

  • As you move toward the edge of your cell, your cell's base station notes that your signal strength is diminishing. Meanwhile, the base station in the cell you are moving toward (which is listening and measuring signal strength on all frequencies, not just its own one-seventh) sees your phone's signal strength increasing. The two base stations coordinate with each other through the MTSO, and at some point, your phone gets a signal on a control channel telling it to change frequencies. This hand off switches your phone to the new cell.


As you travel, the signal is passed from cell to cell.

Let's say you're on the phone and you move from one cell to another -- but the cell you move into is covered by another service provider, not yours. Instead of dropping the call, it'll actually be handed off to the other service provider.

If the SID on the control channel does not match the SID programmed into your phone, then the phone knows it is roaming. The MTSO of the cell that you are roaming in contacts the MTSO of your home system, which then checks its database to confirm that the SID of the phone you are using is valid. Your home system verifies your phone to the local MTSO, which then tracks your phone as you move through its cells. And the amazing thing is that all of this happens within seconds.

The less amazing thing is that you may be charged insane rates for your roaming call. On most phones, the word "roam" will come up on your phone's screen when you leave your provider's coverage area and enter another's. If not, you'd better study your coverage maps carefully -- more than one person has been unpleasantly surprised by the cost of roaming. Check your service contract carefully to find out how much you're paying when you roam.

Note that if you want to roam internationally, you'll need a phone that will work both at home and abroad. Different countries use different cellular access technologies. More on those technologies later. First, let's get some background on analog cell-phone technology so we can understand how the industry has developed.

Cell Phone Codes

Electronic Serial Number
(ESN) - a unique 32-bit number programmed into the phone when it is manufactured


Mobile Identification Number
(MIN) - a 10-digit number derived from your phone's number


System Identification Code
(SID) - a unique 5-digit number that is assigned to each carrier by the FCC


While the ESN is considered a permanent part of the phone, both the MIN and SID codes are programmed into the phone when you purchase a service plan and have the phone activated.


Comments

Popular posts from this blog

How Google Fiber Works

Some of us are old enough to recollect a time when everyone on the Internet used it through a dial-up connection. Your computer connected to a modem that noisily calls the phone number of an  ISP (Internet Service Provider) to allow you connect at 56 kilobits per second, if you were quite fortunate to have a faster modem. Web pages  load slowly onto pc screens.Pictures usually use a lot of time to fully show up. Software usually take hours to fully download. If you do not have a dedicated phone line, you would tie up the line, and the connection may trigger off if someone calls the phone line. We used  more of text than other bandwidth-hungry media out of need. Recently Internet connection speeds have increased tremendously from the use of broadband connections using technologies like cable and DSL (Digital Subscriber Lines) and 4G or LTE .  According to the FCC's standards, the new goal is for all household to have access to broadband with a minimum speed of...

How sonar works

Sonar(sound navigation and ranging) is the use of an echo.If an animal or machine makes a noise, it sends out sound waves into the space surrounding it. The waves bounce back off objects in its path, and some are reflected back to the source of the sound. It's the reflected sound waves that you perceive when your voice echoes back to you in an empty room.  Whales and special machine use reflected waves to locate distant objects(Echo location) and detect their shape and movement. The range and limit of low-frequency sonar is astonishing. Dolphins and whales can differentiate between very small objects size of a pellet 50 feet (15 meters) away, and they use sonar more than sight to locate their food, families, and direction.Whales send signals out bin the range 160 to 190 Db.Bats also use it to locate prey and navigate from obst...

How Google Loon Works.

It is believed that a lot of people are hooked to the  Internet   ,but this is only partially true. Around 4 billion people do not have access to the internet as of late 2015. Several people reside in place where there is no internet infrastructure,or where coverage is unavailable or exorbitantly high. Google, known for its numerous high-tech pursuits,has several projects in the development stage to bring high-speed Internet access to the a lot of people. Their Fiber project aims to provide Gigabit internet service,which faster than the existing connection speeds we are used to. Using fiber optics,it has programs going on in several cities in the US. The firm has a different project focused on taking high-speed Internet access to places that do not have it. The project uses a technology we call it primitive — balloons! The project is known as Project Loon ,because it involves using  balloons  and also because it sounds looney. Google intends to create wireless...